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Motivation

• Automatic decision-

making is widespread

• Examples: Hiring, credit 

lending, personalized 

advertising

However, automated tools can 

adopt biases from historical data1:

• Gender-based discrimination in 

automated hiring

• Race bias in algorithmic risk 

scoring (COMPAS2)

CV

Gender, 

race

Hiring policy     Utility

How to learn a new

policy, taking into 

account ethics or 

laws?

!

1) De-Arteaga M, Feuerriegel S, Saar-Tsechansky M (2022) Algorithmic fairness in business analytics: Directions for research and practice. POM

2) https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis

Example: Data-

driven hiring 

process

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
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Related work: 3 building blocks

Algorithmic fairness

How to incorporate 

sensitive attributes into a 

classifier?

Off-policy learning/ 

Causal machine learning

How to evaluate a policy 

from observational data 

without introducing bias?

Fairness for resource 

allocation

How to allocate a limited 

amount of resources 

fairly?

Fair policy learning from 

observational data

We learn fair policies with 

clever use of tools from 

causal machine learning! 
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• Input: observational data

• Notation: denotes the (potential) 
outcome under treatment intervention 

6

Problem setting

Unsensitive covariates 

(experience, education)

Sensitive covariates 

(gender, race)

Treatment (hiring 

decision)

Outcome (benefit 

metric)
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Policy learning

• A policy    assigns a an individual with covariates to a 
probability of receiving treatment

• Policy value: 

• Goal: Find policy that maximizes the policy value:

• Causal identification: The policy value can be estimated from 
data, if all confounders are observed. Sensitive 
confounders cannot be ignored in policy value estimation.
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Fairness criterea for off-policy learning

1) Action fairness

Policy recommendations 

should not depend on 

sensitive covariates

2) Value fairness

Policy learning algorithm 

should take policy value 

conditioned on the 

sensitive covariate into 

account
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Fairness issues in off-policy learning

Two sources of „unfairness“:

1. Policy depends explicitely on    / covariates correlated with 

2. Policy value is an expectation over and depends on the 
distribution of    on the observed data

Removing     leads to unobserved confounding and 
biased estimates

• = Gender,     = Age independent, policy only depends on 

• Treatment benefits males, harms females

• 80% of the population is male

Policy will always tend to treat (depending on Age)

Policy value will be larger for males than females

Why value 

fairness? 

Toy example
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Fairness criterea for off-policy learning

1) Action fairness

Policy recommendations 

should not depend on 

sensitive covariates

Max-min 

fairness
Envy-free 

fairness

2) Value fairness

Policy learning algorithm 

should take policy values for 

each sensitive attribute into 

account



Value fair policy 

objectives

Neural framework 

for action fair & 

value fair policies
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Proposed causal machine learning method

Neural network parametrization , loss

Envy-free

Max-min

Envy-free

Max-min
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Experimental results: simulated data

Unfair Action fair + no 

value fairness

Action fair + max-

min fair

Action fair + 

Envy-free 

Policy value 0.35 ± 0.04 0.20 ± 0.06 0.19 ± 0.05 0.15 ± 0.03

Policy value (S = 0) 0.17 ± 0.05 0.08 ± 0.04 0.11 ± 0.04 0.07 ± 0.02

Policy value (S = 1) 0.54 ± 0.06 0.45 ± 0.14 0.39 ± 0.08 0.34 ± 0.04

Policy value and difference in 

policy values between 

sensitive groups plotted over 

envy-free parameter



Summary

✓ Fairness concepts for policy learning from observational data

✓ Deviation of finite sample estimators for value-fair policies

✓ Generalization bounds

✓ Novel neural framework that learns action fair & value fair policies via                 

representation learning

✓ Experiments using simulated + real-world data

Implications
✓ Novel application of causal machine learning

✓ We tackle fairness issues for policy learning
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Current state of research
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